餐桌上。
小麦原先正在偷偷摸摸的吃着水煮鲈鱼呢,整个人被花椒给麻的有些怀疑人生,斯哈斯哈的跟在念蛇佬腔似的。
听到徐云这番话后他连忙放下了筷子,飞快的拿起蛋奶酒咕噜一大口,压了压味儿。
做完这些,他才开始思考起徐云的问题。
“未来的计划啊......”
只见他轻轻挠了挠头,看着徐云说道:
“罗峰先生,我原先的打算是先拿到奖学金,毕业后争取留校当个助教,积累点经验。”
“等资历足够了就回苏格兰做个教授,三四年内把家里的债先还掉,然后再看看有没有机会成个家什么的。”
坐他对面的老汤敏锐的注意到了一个词,不由抬起眼皮看了他一眼:
“原先的打算?现在你改主意了?”
“......”
小麦微微颔首,沉默了几秒钟,眼中浮现出一丝迷茫:
“改主意倒是算不上吧...就是有些不知道该选什么。”
“这些天法拉第先生其实有找过我,提出了想收我做研究生的想法。”
“可读研是需要时间的——短则两年,多则四年,这样一来...我家里的债就难还了。”
徐云轻轻看了他一眼。
小麦的父亲约翰·克拉克·麦克斯韦虽然是个律师,但十多年前为了救治小麦母亲的肺结核,他几乎将积蓄耗了个精光。
但遗憾的是,小麦的母亲最终还是去世了。
后来他爹老麦做面粉生意又大亏了一次,在外头欠了一大笔钱。
具体金额徐云不知道,但历史上的小麦足足花了件了?
他一个剑桥大学的数学系在读生,只是和高斯谈笑风生了几回,怎么就成了哥廷根大学教授的弟子了呢?
要不找高斯教授说一声,让他另请高明?
小麦就这样懵懵的与黎曼对望着,浑然不觉身边的徐云,早已陷入了比他们更大的震撼中。
妈耶!
非欧几何啊!
高斯居然把这玩儿给了小麦???
众所周知。
在人类漫长的科学史上,诞生过许多影响深远的著作。
比如东方有《周髀算经》、《九章算术》。
比如西方有《自然哲学的数学原理》、《螺线》等等。
而若论建立空间秩序最久远的方案之书,那么无疑要首推《几何原本》。
这本书建立了赫赫有名的欧氏几何体系,在数学史上堪称基石一般的著作。
欧几里得几何学在被提出后雄视数学界两千年,没有人能动摇它的权威。
但另一方面。
欧式几何在体系上堪称无敌,不过某些细节上却一直都颇有争议。
比如它的第五条公理。
这条公理的内容是这样的:
同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。
由于第五公理文字叙述冗长,不那么显而易见。
因此一些数学家提出了一个想法:
第五公理能不能不作为公理,而作为定理呢?
能不能依靠其他公理来证明第五公理?
这就是几何发展史上争论了长达两千多年的“平行线理论”的讨论。
瑞士几何学家数学家兰贝尔特、法国著名的数学家勒让德和拉格朗日等人,都在这个问题上花费了大量的精力。
然而遗憾的是,他们都没有成功。
这个问题像纸片人老婆一样。
无情地消耗着宅男们的纸巾,而不给予他们任何实质性的爱情。
这种情况一直持续到了19世纪初,终于有个人站了出来:
他就是俄国数学家罗巴切夫斯基。
他的思路与前人截然不同,继承了毛熊的优良传统,大胆思索了这个问题的相反提法:
有没有一种可能,那就是根本就不存在第五公设的证明?
于是呢。
他便沿着这条思路进行研究,着手寻求第五公设不可证的解答。
他首先做的,便是对第五公设加以否定。
也就是假设“过平面上直线外一点,至少可引两条直线与已知直线不相交“。
然后用这个否定命题和其他公理公设组成新的公理系统,并由此展开逻辑推演。
最终在在推演过程中,他得到了一连串古怪的数据。
但令人惊讶的是。
经过巴罗切夫斯基的仔细审查,却没有发现它们之间含有任何逻辑矛盾。
于是罗巴切夫斯基大胆断言:
这个“在结果中并不存在任何矛盾“的新公理系统,可以构成一种新的几何。
它的逻辑完整性和严密性可以和欧几里得几何相媲美,而这个
本章未完,请翻下一页继续阅读.........